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Abstract

In upwelling areas, the relationship between upwelling intensity and pelagic fish recruitment success appears to be
sometimes positively and sometimes negatively correlated. The Optimal Environmental Window (OEW) hypothesis offers
an interpretation for these apparently contradictory results. The OEW hypothesis suggests that a dome shaped
relationship exists between recruitment success and upwelling intensity: recruitment success increases with upwelling
intensity in areas where wind speed is low or moderate, food availability is then the limiting factor, recruitment success
decreases with upwelling intensity in areas of strong wind where physical constraints are the main determinants of
larvae mortality rates. Several studies have shown that the relationship between recruitment success of small pelagic
fish stocks located in upwelling areas is dome shaped and in agreement with the OEW hypothesis. The limiting factors
defined by the OEW hypothesis are also able to account for apparent contradictory patterns observed between
reproductive strategies of related species located in geographically distinct areas.

The OEW hypothesis applies to eastern boundary current ecosystems located in tropical or subtropical areas where
trade winds are responsible for the upwelling process. The applicability of the OEW to higher latitude areas like the
ICES regions is discussed and an example of an ICES region where upwelling events take place is presented.

Introduction The applicability of the OEW to temperate latitude
areas is discussed and the Iberian sardine is presented
as an example of an ICES region where upwelling

Many attempts have been made to correlate environ-
events take place.

mental fluctuations to recruitment indices. For the
pilchard (Sardinops ocellatus), a relationship between
year-class strength and sea-surface temperature is . . .
found to be positive in the southern Benguela (Shelton An Optlmal Environmental Window
et al., 1985) but for the same species a negative one for recruitment success in upwelling
is found in the northern Benguela (Shannon er al., areas

1988). For the Iberian sardine (Sardina pilchardus),
Dickson et al. (1988) found a negative correlation
between catch and upwelling indices (Figure 1). In
a nearby area, Belveéze and Erzini (1983) found a
positive relationship between the catch of the
Moroccan sardine (Sardina pilchardus) and up-
welling (Figure 1).

Food availability and physical constraints such as
wind mixing or offshore transport are considered
important factors that affect larval survival and pela-
gic fish recruitment. Acceptable food concentrations
associated with stable ocean conditions must be
present in the larvae’s environment for survival
(Lasker, 1981). Small-scale turbulence that increases
the encounter rate between food particles and larvae
(Rothschild and Osborn, 1988; MacKenzie and Legg-
ett, 1991) may also be beneficial to larval survival.
Strong mixing generated by high wind speed has a
negative effect on larval survival by desaggregating

These results question the existence of a unified
theory relating recruitment with the environment in

upwelling areas. However, positive and negative
correlations may both be valid if the relationship
between recruitment and upwelling intensity is dome
shaped as suggested by the "Optimal Environmental )
Window" (OEW) hypothesis (Cury and Roy, 1989). food and larvae patches (Saville, 1965; Peterman and
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Bradford, 1987) and may affect recruitment (Lasker,
1981). In an upwelling ecosystem, vertical advection,
new inputs of nutrients and mixing are generally
closely related to the magnitude of the wind speed
(Figure 2). Increasing upwelling intensity from weak
to moderate should have a positive effect on recruit-
ment since increased primary production would
enhance food availability with wind mixing remaining
low. Strong upwelling should have a negative effect
on recruitment because wind mixing is high even if
primary production increases.

The Optimal Environmental Window (OEW) hypoth-
esis (Cury and Roy, 1989) assumes that the relation
between recruitment and upwelling indices is dome
shaped (Figure 3). The non linearity of the curve is
explained by considering the positive or negative
effects of several environmental factors. On the left
side of the curve wind is weak or moderate; an
increase in the wind speed may enhance food produc-
tion or the encounter rate between larvae and food.
On the right side of the curve the upwelling is strong
so that wind-mixing and offshore transport are then
detrimental factors. There is an "Optimal Environ-
mental Window" for recruitment success in moderate
upwellings where the effects of the limiting factors
are minimized (Figure 3).

Ecological validations of the OEW
recruitment variability

Four of the main pelagic fish stocks, all located in
tropical or subtropical upwelling areas, were analyzed
using an exploratory statistical method (Cury and
Roy, 1989). For the Peruvian anchovy, the
Californian sardine, the Moroccan sardine and the
Senegalese sardinella, this comparative analysis
shows that a dome shaped relation exists between
recruitment and upwelling intensity (Figure 4). The
non-linearity always appears for values of wind speed
around 5-6 ms! (Figure 4). This suggests that for
different upwelling ecosystems there is a common and
"optimum" wind mixing level in the stable layers of
the upper ocean.

Using new estimates of recruitment for the Peruvian
anchoveta, Mendelssohn (1989) found similar results.
Using extended time series for the Pacific sardine,
Ware and Thompson (1991) supported the existence
of an optimal environmental window but at a wind
speed value of around 7-8 ms™'. Roy er al. (1992)
show new evidence of a non-linear relationship
between recruitment and upwelling for the Moroccan
sardine. Recently, an analysis of the Californian
anchovy larvae data also supported the existence of a

58

dome-shaped relationship between larvae abundance
and upwelling intensity (Cury et al., in press).

Reproductive strategies

Using a comparative approach as suggested by Par-
rish er al. (1983), Roy et al. (1989) investigated the
spatial and temporal reproductive dynamics of some
coastal pelagic fish off West Africa. The spawning
areas are not continuously distributed along the coast
and do not always coincide with the location of highly
productive areas. Reproduction occurs in places
where the continental shelf broadens or in coastal
indentations like a bay or downstream of a cap : this
strategy allows to minimize the detrimental effects of
dispersion on larvae by reproducing where offshore
transport is minimum. Similar patterns were also
found in other upwelling areas (Parrish ef al., 1983).
Along the West African coast, contradictory patterns
emerged when the timing of spawning is examined
simultaneously with the timing of the upwelling. In
some areas like Senegal or Ivory Coast, the spawning
season coincides with the upwelling season, but in
other areas like Sahara and Morocco spawning and
upwelling are out of phase (Figure 5).

The OEW hypothesis was used to account for these
contradictory patterns that have emerged (Roy et al.,
1992). For the main reproductive areas off West
Africa, the mean monthly wind speed is plotted
versus the coastal upwelling index (Figure 5). This
allows a comparison to be made between areas of the
environmental patterns during and outside the repro-
ductive seasons. For the four different areas, spawn-
ing peaks occur at a different value of the upwelling
index (between 1 and 3.2 m’s'm™), however high
reproductive activity always coincides with time
periods of wind speed of about 6 ms™ (Figure 5). The
following scheme was proposed :

- in areas where wind speed during the upwelling
season is close to, or lower than, the threshold
value of 6 ms"', spawning occurs during the
upwelling season, thus allowing larvae to benefit
from the enhanced food production.

- in areas where wind speed during the upwelling
season is higher than the threshold value, spawn-
ing occurs outside the upwelling season or when
upwelling is minimum. This strategy minimizes
the negative effect of strong wind mixing on
larval survival.

For West African sardine and sardinellas, adequate
spawning locations allow to solve the detrimental
effect of offshore transport on larvae. Such a spawn-
ing habit leaves adjustment of seasonality as an avail-



able means for dealing with other factors such as the
detrimental effects of turbulence. It appears that the
tuning of the spawning season is not related to the
seasonal occurrence of the upwelling. Rather, the
spawning peaks coincide with the seasonal occurrence
of wind speed of 6 ms'. This reproductive strategy
appears to be the result of a compromise between
several antagonistic environmental factors. It has
evolved in order to invest most of the reproductive
effort in the areas where and seasons when the effects
of the limiting factors for recruitment success are
minimized. From an evolutionary point of view, this
pattern can be interpreted as the response of a long
term adaptation of reproduction to the environment
for maximizing recruitment success.

The OEW hypothesis assumes that both nutrient
enrichment (upwelling intensity), mixing and offshore
transport are positively correlated with the magnitude
of the wind (Figure 2). This is the case in tropical or
subtropical Ekman-type coastal upwelling areas where
trade winds are responsible for the upwelling process.
In these regions, the positive correlation between the
wind-mixing index, offshore transport and upwelling
intensity is the result of the steadiness of the wind
regime. The underlying assumption of the OEW
hypothesis in this situation are : biological produc-
tion, offshore transport and mixing are related to
wind speed.

In tropical or sub-tropical areas, the seasonallity of
the upwelling process is induced by the latitudinal
migration of the atmospheric high pressure cells
located over the oceans (Azores and Saint Helen
Highs in the Atlantic); the duration of upwelling
seasons varies from several months (California,
Morocco, South-Africa, ...) to almost year-round
durations in areas like Cap-Blanc (West-Africa) Baja
California or Peru. It is expected that seasonal and
interannual  fluctuations of the wind create
coresponding fluctuations of the ecosystem biological
components.

The OEW in ICES areas

In mid-latitude or temperate regions, biological pro-
ductivity is highly seasonal and the annual production
cycle is dominated by the plankton spring bloom. The
initial peak in primary production is attributable to
the onset of stratification in waters which were
enriched with nutrients earlier in winter by wind
mixing. Primary production typically falls during
summer due to a pronounced vertical stratification

and a shortage of nutrient supply; mid-latitude pro-
duction is distinguished from that at lower latitudes
by its discontinuities. Mid-latitude ecosystems differ
from tropical or sub-tropical upwelling areas : tem-
perature, nutrients, light, mixing and grazing are the
expected limiting factors of biological production. In
temperate areas, the limited duration of the growth
season 1is also in total contrast with the almost perma-
nent processes that occur in lower latitude areas
(Cushing, 1971; Wyatt, 1980). This suggests that the
underlying assumption of the OEW may not always
apply in temperate areas.

The upwelling off the Iberian Penin-
sula

The ocean dynamics and the biology in the ICES
areas may differ from the dynamics of tropical or
sub-tropical upwelling areas. However, upwelling
locally occurs : coastal trapped waves, tidal energy,
eddies, wind curl are known to induce upwelling
along the shelf break (Pingree and Mardell, 1981;
Bakun and Nelson, 1991; Mazé et al., 1986).

Along the West coast of the Iberian peninsula, north-
erly winds generates an Ekman type upwelling in
spring and summer (Wooster et al., 1976). For the
Iberian sardine (Sardina pilchardus), Dickson et al.
(1988) showed that there is a negative correlation
between upwelling indices and catch (Figure 1);
increasing upwelling off the West coast of Portugal
and Spain seems to be detrimental to sardine abun-
dance. These results seems to be in agreement with
the OEW hypothesis which suggests a negative corre-
lation between wind and recruitment in areas with
wind speed greater than 6 m/s. However, S. pilchar-
dus reproduction occurs along the Atlantic coast but
also in the Cantabrian sea; moreover, spawning
activity is not synchrone along the Iberian peninsula
coasts. Reproduction occurs in winter or early spring
in the Cantabrian Sea and juveniles later migrate to
the upwelling area off the West coast of Spain and
Portugal (Garcia et al., 1988; Sola et al., 1992). Off
Portugal, reproduction is maximum in winter with a
second peak in early spring (Cunha and Figueiredo,
1988; Ré et al., 1990). Recruitment variability of the
Iberian sardine appears to be correlated with winds
occuring after the main spawning peak (Portugal) or
outside of the spawning area (Cantabrian sea) (Robles
et al., 1992). Therefore, it appears to be difficult to
invoke the effect of wind on larvae to explain the
observed relationship between recruitment and
upwelling.
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Identification of relevant processes for
recruitment success: The Cantabrian
Sea spawning area

Time series analysis has shown negative correlations
between upwelling intensity and recruitment success
of the Iberian sardine population (Dickson et al.,
1988). However, the physical and biological pro-
cesses involved remain unclear (Chesney and Alonso-
-Noval, 1989) and it is unlikely that purely empirical
approaches will clarify the involved processes.
Instead, relevant environmental processes for recruit-
ment success of the Iberian sardine can be identified
using the approach of Parrish et al. (1983). Since
natural selection implies that reproductive strategies
reflect responses to the most crucial factors regulating
reproductive success, a joint investigation of the early
life history of the fish and of the environment is
likely to reflect important causal mechanisms. This
approach also provides a guide for selection of rel-
evant variables for time-series analysis in a way that
makes improved use of the scarce degrees of freedom
available (Bakun, 1986).

As an example we choose to investigate the reproduc-
tive pattern of S. pilchardus in the Cantabrian sea.
Spawning of the Iberian sardine occurs in the Canta-
brian sea while nursery and feeding grounds are
located along the coast of Galicia and off the West
Coast of Spain and Portugal (Porteiro et al., 1986;
Garcia et al., 1991). Intense spawning occurs during
spring in the Cantabrian sea outside the upwelling
area (Garcia et al., 1991). Little reproduction occurs
during spring in the highly productive upwelling areas
off the Spanish West coast. The spawning peak
occurs in the Cantabrian Sea between April and Mays;
simultaneously, a sharp decrease of the wind mixing
is observed in this area (the value of the wind speed
decrease from 8.1 ms” in March to less than 5.5 ms™!
in June, a value below the thereshold value of the
OEW) (Figure 6). The resulting stabilization of the
surface layer appears to set conditions for a
phytoplankton bloom and high larvae survival. A
similar relaxation occurs along the West coast of
Spain but with a smaller amplitude; in that area, wind
speed remains greater than 6 m/s during spring and
summer. An interpretation of the reproductive pat-
terns in the Cantabrian sea is that :

- the detrimental effects of dispersion (offshore
transport) are minimized by reproducing outside
the upwelling area;

- the timing of the reproductive season is set to take
advantage of the annual spring bloom and also to
avoid the detrimental effect of strong wind mixing
on larvae.
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Conclusion

Previous studies have shown that strong upwelling is
detrimental for the recruitment success of the Iberian
sardine population but the environmental process
involved remains unclear. The coast of the Canta-
brian sea is an area where high concentration of eggs
and larvae are found; high reproductive activity
occurs in spring when the wind speed reaches the
threshold value of the OEW. Year to year fluctu-
ations of the timing of the wind relaxation may occur.
Larvae survival will be particularly affected by a
delay of the wind relaxation or by the occurrence of
late storms which will suddenly increase mixing in
the surface layers. This suggests that a time series
analysis of recruitment variability of the Iberian
sardine should consider the interannual fluctuations of
wind off the Cantabrian coast during spring and early
summer as a relevant environmental variable. Follow-
ing the OEW hypothesis, a negative relationship
between wind and recruitment would be expected.
However, the coast of Portugal is also thought to be
an important spawning area for sardine; reproductive
activity is maximum during winter when wind mixing
generated by storms is high. Both areas may contrib-
ute to the overall recruitment of the Iberian sardine
population.

The OEW may or may not apply to ICES areas
depending on the validity of the underlaying assump-
tions of the OEW in the area under study. However,
OEW hypothesis highlights some important character-
istics on the way the environment can affect popula-
tion dynamics :

- recruitment success does not always depend on a
single environmental key factor but rather will be
the result of the combination of different factors
acting sometimes in opposite ways (i.e. upwelling
intensity and wind mixing).

- non-linear relationships are to be expected
between the environment and recruitment variabil-
ity : upwelling can be either beneficial or detri-
mental, depending on its intensity. A scattergram
that reveals no linear relationship does not necess-
arily mean the absence of a tight link and non-lin-
ear statistical techniques are needed to explore the
effect of the environment on fish population
(Mendelssohn, submitted; Cury et al., in press);

- changes through time or between areas may also
occur : shift of the wind speed from one side to
the other of the threshold value defined by the
OEW will change the sign of the relationship
between recruitment and the environment (Roy et
al., 1992).
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An example of positive and negative correlations between catch and upwelling index obtained for the
same species (Sardina pilchardus) at two different locations: the sardine off Morocco (from Belveze
and Erzini, 1983) and the sardine off Spain (from Dickson er al., 1988).
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